
The PS/2 Mouse/Keyboard Protocol http://www.computer-engineering.org/ps2protocol/

1 of 6 7/3/2007 1:41 PM

The PS/2 Mouse/Keyboard Protocol

Source: http://www.Computer-Engineering.org
Author: Adam Chapweske
Last Updated: 05/09/03

Legal Information:

All information within this article is provided "as is" and without any express or implied warranties, including, without

limitation, the implied warranties of merchantibility and fitness for a particular purpose.

This article is protected under copyright law. This document may be copied only if the source, author, date, and legal

information is included.

Abstract:

This document descibes the interface used by the PS/2 mouse, PS/2 keyboard, and AT keyboard. I'll cover the physical

and electrical interface, as well as the protocol. If you need higher-level information, such as commands, data packet

formats, or other information specific to the keyboard or mouse, I have written separate documents for the two devices:

The PS/2 (AT) Keyboard Interface

The PS/2 Mouse Interface

The Physical Interface:

The physical PS/2 port is one of two styles of connectors: The 5-pin DIN or the 6-pin mini-DIN. Both connectors are

completely (electrically) similar; the only practical difference between the two is the arrangement of pins. This means the

two types of connectors can easily be changed with simple hard-wired adaptors. These cost about $6 each or you can

make your own by matching the pins on any two connectors. The DIN standard was created by the German

Standardization Organization (Deutsches Institut fuer Norm) . Their website is at http://www.din.de (this site is in

German, but most of their pages are also available in English.)

PC keyboards use either a 6-pin mini-DIN or a 5-pin DIN connector. If your keyboard has a 6-pin mini-DIN and your

computer has a 5-pin DIN (or visa versa), the two can be made compatible with the adaptors described above. Keyboards

with the 6-pin mini-DIN are often referred to as "PS/2" keyboards, while those with the 5-pin DIN are called "AT" devices

("XT" keyboards also used the 5-pin DIN, but they are quite old and haven't been made for many years.) All modern

keyboards built for the PC are either PS/2, AT, or USB. This document does not apply to USB devices, which use a

completely different interface.

Mice come in a number of shapes and sizes (and interfaces.) The most popular type is probably the PS/2 mouse, with

USB mice gaining popularity. Just a few years ago, serial mice were also quite popular, but the computer industry is

abandoning them in support of USB and PS/2 devices. This document applies only to PS/2 mice. If you want to interface

a serial or USB mouse, there's plenty of information available elsewhere on the web.

The cable connecting the keyboard/mouse to the computer is usually about six feet long and consists of four to six 26

AWG wires surrounded by a thin layer of mylar foil sheilding. If you need a longer cable, you can buy PS/2 extenstion

cables from most consumer electronics stores. You should not connect multiple extension cables together. If you need a

30-foot keyboard cable, buy a 30-foot keyboard cable. Do not simply connect five 6-foot cables together. Doing so could

result in poor communication between the keyboard/mouse and the host.

As a side note, there is one other type of connector you may run into on keyboards. While most keyboard cables are

hard-wired to the keyboard, there are some whose cable is not permanently attached and come as a separate component.

These cables have a DIN connector on one end (the end that connects to the computer) and a SDL (Sheilded Data Link)

connector on the keyboard end. SDL was created by a company called "AMP." This connector is somewhat similar to a

The PS/2 Mouse/Keyboard Protocol http://www.computer-engineering.org/ps2protocol/

2 of 6 7/3/2007 1:41 PM

telephone connector in that it has wires and springs rather than pins, and a clip holds it in place. If you need more

information on this connector, you might be able to find it on AMP's website at http://www.connect.amp.com. Don't

confuse the SDL connector with the USB connector--they probably both look similar in my diagram below, but they are

actually very different. Keep in mind that the SDL connector has springs and moving parts, while the USB connector

does not.

The pinouts for each connector are shown below:

Male

(Plug)

Female

(Socket)

5-pin DIN (AT/XT):

1 - Clock

2 - Data

3 - Not Implemented

4 - Ground

5 - Vcc (+5V)

Male

(Plug)

Female

(Socket)

6-pin Mini-DIN (PS/2):

1 - Data

2 - Not Implemented

3 - Ground

4 - Vcc (+5V)

5 - Clock

6 - Not Implemented

6-pin SDL:

A - Not Implemented

B - Data

C - Ground

D - Clock

E - Vcc (+5V)

F - Not Implemented

The Electrical Interface:

Note: Throughout this document, I will use the more general term "host" to refer to the computer--or whatever the

keyboard/mouse is connected to-- and the term "device" will refer to the keyboard/mouse.

Vcc/Ground provide power to the keyboard/mouse. The keyboard or mouse should not draw more than 275 mA from the

host and care must be taken to avoid transient surges. Such surges can be caused by "hot-plugging" a keyboard/mouse (ie,

connect/disconnect the device while the computer's power is on.) Older motherboards had a surface-mounted fuse

protecting the keyboard and mouse ports. When this fuse blew, the motherboard was useless to the consumer, and

non-fixable to the average technician. Most newer motherboards use auto-reset "Poly" fuses that go a long way to remedy

this problem. However, this is not a standard and there's still plenty of older motherboards in use. Therefore, I

recommend against hot-plugging a PS/2 mouse or keyboard.

Summary: Power Specifications

Vcc = +4.5V to +5.5V.

Max Current = 275 mA.

The Data and Clock lines are both open-collector with pullup resistors to Vcc. An "open-collector" interface has two

possible state: low, or high impedance. In the "low" state, a transistor pulls the line to ground level. In the "high

impedance" state, the interface acts as an open circuit and doesn't drive the line low or high. Furthermore, a "pullup"

resistor is connected between the bus and Vcc so the bus is pulled high if none of the devices on the bus are actively

The PS/2 Mouse/Keyboard Protocol http://www.computer-engineering.org/ps2protocol/

3 of 6 7/3/2007 1:41 PM

pulling it low. The exact value of this resistor isn't too important (1~10 kOhms); larger resistances result in less power

consumption and smaller resistances result in a faster rise time. A general open-collector interface is shown below:

Figure 1: General open-collector interface. Data and Clock are read on the microcontroller's pins A and B,

respectively. Both lines are normally held at +5V, but can be pulled to ground by asserting logic "1" on C

and D. As a result, Data equals D, inverted, and Clock equals C, inverted.

Note: When looking through examples on this website, you'll notice I use a few tricks when implementing an

open-collector interface with PIC microcontrollers. I use the same pin for both input and output, and I enable the PIC's

internal pullup resistors rather than using external resistors. A line is pulled to ground by setting the corresponding pin to

output, and writing a "zero" to that port. The line is set to the "high impedance" state by setting the pin to input. Taking

into account the PIC's built-in protection diodes and sufficient current sinking, I think this is a valid configuration. Let me

know if your experiences have proved otherwise.

Communication: General Description

The PS/2 mouse and keyboard implement a bidirectional synchronous serial protocol. The bus is "idle" when both lines

are high (open-collector). This is the only state where the keyboard/mouse is allowed begin transmitting data. The host

has ultimate control over the bus and may inhibit communication at any time by pulling the Clock line low.

The device always generates the clock signal. If the host wants to send data, it must first inhibit communication from the

device by pulling Clock low. The host then pulls Data low and releases Clock. This is the "Request-to-Send" state and

signals the device to start generating clock pulses.

Summary: Bus States

Data = high, Clock = high: Idle state.

Data = high, Clock = low: Communication Inhibited.

Data = low, Clock = high: Host Request-to-Send

 All data is transmitted one byte at a time and each byte is sent in a frame consisting of 11-12 bits. These bits are:

1 start bit. This is always 0.

8 data bits, least significant bit first.

1 parity bit (odd parity).

1 stop bit. This is always 1.

1 acknowledge bit (host-to-device communication only)

The PS/2 Mouse/Keyboard Protocol http://www.computer-engineering.org/ps2protocol/

4 of 6 7/3/2007 1:41 PM

The parity bit is set if there is an even number of 1's in the data bits and reset (0) if there is an odd number of 1's in the

data bits. The number of 1's in the data bits plus the parity bit always add up to an odd number (odd parity.) This is used

for error detection. The keyboard/mouse must check this bit and if incorrect it should respond as if it had received an

invalid command.

Data sent from the device to the host is read on the falling edge of the clock signal; data sent from the host to the device is

read on the rising edge. The clock frequency must be in the range 10 - 16.7 kHz. This means clock must be high for 30 -

50 microseconds and low for 30 - 50 microseconds.. If you're designing a keyboard, mouse, or host emulator, you should

modify/sample the Data line in the middle of each cell. I.e. 15 - 25 microseconds after the appropriate clock transition.

 Again, the keyboard/mouse always generates the clock signal, but the host always has ultimate control over

communication.

Timing is absolutely crucial. Every time quantity I give in this article must be followed exactly.

Communication: Device-to-Host

The Data and Clock lines are both open collector. A resistor is connected between each line and +5V, so the idle state of

the bus is high. When the keyboard or mouse wants to send information, it first checks the Clock line to make sure it's at a

high logic level. If it's not, the host is inhibiting communication and the device must buffer any to-be-sent data until the

host releases Clock. The Clock line must be continuously high for at least 50 microseconds before the device can begin to

transmit its data.

As I mentioned in the previous section, the keyboard and mouse use a serial protocol with 11-bit frames. These bits are:

1 start bit. This is always 0.

8 data bits, least significant bit first.

1 parity bit (odd parity).

1 stop bit. This is always 1.

The keyboard/mouse writes a bit on the Data line when Clock is high, and it is read by the host when Clock is low.

 Figures 2 and 3 illustrate this.

Figure 2: Device-to-host communication. The Data line changes state when Clock is high and that data is valid when

Clock is low.

Figure 3: Scan code for the "Q" key (15h) being sent from a keyboard to the computer. Channel A is the Clock signal;

channel B is the Data signal.

The PS/2 Mouse/Keyboard Protocol http://www.computer-engineering.org/ps2protocol/

5 of 6 7/3/2007 1:41 PM

The clock frequency is 10-16.7 kHz. The time from the rising edge of a clock pulse to a Data transition must be at least 5

microseconds. The time from a data transition to the falling edge of a clock pulse must be at least 5 microseconds and no

greater than 25 microseconds.

The host may inhibit communication at any time by pulling the Clock line low for at least 100 microseconds. If a

transmission is inhibited before the 11th clock pulse, the device must abort the current transmission and prepare to

retransmit the current "chunk" of data when host releases Clock. A "chunk" of data could be a make code, break code,

device ID, mouse movement packet, etc. For example, if a keyboard is interrupted while sending the second byte of a

two-byte break code, it will need to retransmit both bytes of that break code, not just the one that was interrupted.

If the host pulls clock low before the first high-to-low clock transition, or after the falling edge of the last clock pulse, the

keyboard/mouse does not need to retransmit any data. However, if new data is created that needs to be transmitted, it will

have to be buffered until the host releases Clock. Keyboards have a 16-byte buffer for this purpose. If more than 16 bytes

worth of keystrokes occur, further keystrokes will be ignored until there's room in the buffer. Mice only store the most

current movement packet for transmission.

Host-to-Device Communication:

The packet is sent a little differently in host-to-device communication...

First of all, the PS/2 device always generates the clock signal. If the host wants to send data, it must first put the Clock

and Data lines in a "Request-to-send" state as follows:

Inhibit communication by pulling Clock low for at least 100 microseconds.

Apply "Request-to-send" by pulling Data low, then release Clock.

The device should check for this state at intervals not to exceed 10 milliseconds. When the device detects this state, it

will begin generating Clock signals and clock in eight data bits and one stop bit. The host changes the Data line only

when the Clock line is low, and data is read by the device when Clock is high. This is opposite of what occours in

device-to-host communication.

After the stop bit is received, the device will acknowledge the received byte by bringing the Data line low and generating

one last clock pulse. If the host does not release the Data line after the 11th clock pulse, the device will continue to

generate clock pulses until the the Data line is released (the device will then generate an error.)

The host may abort transmission at time before the 11th clock pulse (acknowledge bit) by holding Clock low for at least

100 microseconds.

To make this process a little easier to understand, here's the steps the host must follow to send data to a PS/2 device:

1) Bring the Clock line low for at least 100 microseconds.

2) Bring the Data line low.

3) Release the Clock line.

The PS/2 Mouse/Keyboard Protocol http://www.computer-engineering.org/ps2protocol/

6 of 6 7/3/2007 1:41 PM

4) Wait for the device to bring the Clock line low.

5) Set/reset the Data line to send the first data bit

6) Wait for the device to bring Clock high.

7) Wait for the device to bring Clock low.

8) Repeat steps 5-7 for the other seven data bits and the parity bit

9) Release the Data line.

10) Wait for the device to bring Data low.

11) Wait for the device to bring Clock low.

12) Wait for the device to release Data and Clock

Figure 3 shows this graphically and Figure 4 separates the timing to show which signals are generated by the host, and

which are generated by the PS/2 device. Notice the change in timing for the "ack" bit--the data transition occours when

the Clock line is high (rather than when it is low as is the case for the other 11 bits.)

Figure 3: Host-to-Device Communication.

Figure 4: Detailed host-to-device communication.

Referring to Figure 4, there's two time quantities the host looks for. (a) is the time it takes the device to begin generating

clock pulses after the host initially takes the Clock line low, which must be no greater than 15 ms. (b) is the time it takes

for the packet to be sent, which must be no greater than 2ms. If either of these time limits is not met, the host should

generate an error. Immediately after the "ack" is received, the host may bring the Clock line low to inhibit communication

while it processes data. If the command sent by the host requires a response, that response must be received no later than

20 ms after the host releases the Clock line. If this does not happen, the host generates an error.

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

1 of 12 7/3/2007 1:39 PM

The PS/2 Keyboard Interface

Source: http://www.Computer-Engineering.org
Author: Adam Chapweske
Last Updated: 04/01/03

Legal Information:

All information within this article is provided "as is" and without any express or implied warranties, including, without

limitation, the implied warranties of merchantibility and fitness for a particular purpose.

This article is protected under copyright law. This document may be copied only if the source, author, date, and legal

information is included.

Abstract:

This article tries to cover every aspect of AT and PS/2 keyboards. It includes information on the low-level signals and

protocol, scan codes, the command set, initialization, compatibility issues, and other miscellaneous information. Since it's

closely related, I've also included information on the PC keyboard controller. All code samples involving the keyboard

encoder are written in assembly for Microchip's PIC microcontrollers. All code samples related to the keyboard controller

are written in x86 assembly

A History Lesson:

The most popular keyboards in use today include:

USB keyboard - Latest keyboard supported by all new computers (Macintosh and IBM/compatible). These are

relatively complicated to interface and are not covered in this article.

IBM/Compatible keyboards - Also known as "AT keyboards" or "PS/2 keyboards", all modern PCs support this

device. They're the easiest to interface, and are the subject of this article.

ADB keyboards - Connect to the Apple Desktop Bus of older Macintosh systems. These are not covered in this

article

IBM introduced a new keyboard with each of its major desktop computer models. The original IBM PC, and later the

IBM XT, used what we call the "XT keyboard." These are obsolete and differ significantly from modern keyboards; the

XT keyboard is not covered in this article. Next came the IBM AT system and later the IBM PS/2. They introduced the

keyboards we use today, and are the topic of this article. AT keyboards and PS/2 keyboards were very similar devices,

but the PS/2 device used a smaller connector and supported a few additional features. Nonetheless, it remained backward

compatible with AT systems and few of the additional features ever caught on (since software also wanted to remain

backward compatible.) Below is a summary of IBM's three major keyboards.

IBM PC/XT Keyboard (1981):

83 keys

5-pin DIN connector

Simple uni-directional serial protocol

Uses what we now refer to as scan code set 1

No host-to-keyboard commands

IBM AT Keyboard (1984) - Not backward compatible with XT systems(1).

84 -101 keys

5-pin DIN connector

Bi-directional serial protocol

Uses what we now refer to as scan code set 2

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

2 of 12 7/3/2007 1:39 PM

Eight host-to-keyboard commands

IBM PS/2 Keyboard (1987) - Compatible with AT systems, not compatible with XT systems(1).

84 - 101 keys

6-pin mini-DIN connector

Bi-direction serial protocol

Offers optional scan code set 3

17 host-to-keyboard commands

The PS/2 keyboard was originally an extension of the AT device. It supported a few additional host-to-keyboard

commands and featured a smaller connector. These were the only differences between the two devices. However,

computer hardware has never been about standards as much as compatibility. For this reason, any keyboard you buy

today will be compatible with PS/2 and AT systems, but it may not fully support all the features of the original devices.

Today, "AT keyboard" and "PS/2 keyboard" refers only to their connector size. Which settings/commands any given

keyboard does or does not support is anyone's guess. For example, the keyboard I'm using right now has a PS/2-style

connector but only fully supports seven commands, partially supports two, and merely "acknowledges" the rest. In

contrast, my "Test" keyboard has an AT-style connector but supports every feature/command of the original PS/2 device

(plus a few extra.) It's important you treat modern keyboards as compatible, not standard. If your design a

keyboard-related device that relies on non-general features, it may work on some systems, but not on others...

Modern PS/2 (AT) compatible keyboards

Any number of keys (usually 101 or 104)

5-pin or 6-pin connector; adaptor usually included

Bi-directional serial protocol

Only scan code set 2 guaranteed.

Acknowledges all commands; may not act on all of them.

Footnote 1) XT keyboards use a completely different protocol than that used by AT and PS/2 systems, making it

incompatible with the newer PCs. However, there was a transition period where some keyboard controllers supported

both XT and AT (PS/2) keyboards (through a switch, jumper, or auto-sense.) Also, some keyboards were made to work

on both types of systems (again, through the use of a switch or auto-sensing.) If you've owned such a PC or keyboard,

don't let it fool you--XT keyboards are NOT compatible with modern computers.

General Description:

Keyboards consist of a large matrix of keys, all of which are monitored by an on-board processor (called the "keyboard

encoder".) The specific processor(1) varies from keyboard-to-keyboard but they all basically do the same thing: Monitor

which key(s) are being pressed/released and send the appropriate data to the host. This processor takes care of all the

debouncing and buffers any data in its 16-byte buffer, if needed. Your motherboard contains a "keyboard controller"(2)

that is in charge of decoding all of the data received from the keyboard and informing your software of what's going on.

All communication between the host and the keyboard uses an IBM protocol.

Footnote 1) Originally, IBM used the Intel 8048 microcontroller as its keyboard encoder. There are now a wide variety

of keyboard encoder chips available from many different manufacturers.

Footnote 2) Originally, IBM used the Intel 8042 microcontroller as its keyboard controller. This has since been replaces

with compatible devices integrated in motherboards' chipsets. The keyboard controller is covered later in this article.

Electrical Interface / Protocol:

The AT and PS/2 keyboards use the same protocol as the PS/2 mouse. Click here for detailed information on this

protocol.

Scan Codes:

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

3 of 12 7/3/2007 1:39 PM

Your keyboard's processor spends most of its time "scanning", or monitoring, the matrix of keys. If it finds that any key is

being pressed, released, or held down, the keyboard will send a packet of information known as a "scan code" to your

computer. There are two different types of scan codes: "make codes" and "break codes". A make code is sent when a key

is pressed or held down. A break code is sent when a key is released. Every key is assigned its own unique make code

and break code so the host can determine exactly what happened to which key by looking at a single scan code. The set of

make and break codes for every key comprises a "scan code set". There are three standard scan code sets, named one,

two, and three. All modern keyboards default to set two.(1)

So how do you figure out what the scan codes are for each key? Unfortunately, there's no simple formula for calculating

this. If you want to know what the make code or break code is for a specific key, you'll have to look it up in a table. I've

composed tables for all make codes and break codes in all three scan code sets:

Scan Code Set 1 - Original XT scan code set; supported by some modern keyboards

Scan Code Set 2 - Default scan code set for all modern keyboards

Scan Code Set 3 - Optional PS/2 scan code set--rarely used

Footnote 1) Originally, the AT keyboard only supported set two, and the PS/2 keyboard would default to set two but

supported all three. Most modern keyboards behave like the PS/2 device, but I have come across a few that didn't

support set one, set three, or both. Also, if you've ever done any low-level PC programming, you've probably notice the

keyboard controller supplies set ONE scan codes by default. This is because the keyboard controller converts all

incomming scan codes to set one (this stems from retaining compatibility with software written for XT systems.)

However, it's still set two scan codes being sent down the keyboard's serial line.

Make Codes, Break Codes, and Typematic Repeat:

Whenever a key is pressed, that key's make code is sent to the computer. Keep in mind that a make code only represents a

key on a keyboard--it does not represent the character printed on that key. This means that there is no defined relationship

between a make code and an ASCII code. It's up to the host to translate scan codes to characters or commands.

Although most set two make codes are only one-byte wide, there are a handfull of "extended keys" whose make codes are

two or four bytes wide. These make codes can be identified by the fact that their first byte is E0h.

Just as a make code is sent to the computer whenever a key is pressed, a break code is sent whenever a key is released. In

addition to every key having its own unique make code, they all have their own unique break code(1). Fortunately,

however, you won't always have to use lookup tables to figure out a key's break code--certain relationships do exist

between make codes and break codes. Most set two break codes are two bytes long where the first byte is F0h and the

second byte is the make code for that key. Break codes for extended keys are usually three bytes long where the first two

bytes are E0h, F0h, and the last byte is the last byte of that key's make code. As an example, I have listed below a the set

two make codes and break codes for a few keys:

Key
(Set 2)

Make Code

(Set 2)

Break Code

"A" 1C F0,1C

"5" 2E F0,2E

"F10" 09 F0,09

Right Arrow E0, 74 E0, F0, 74

Right "Ctrl" E0, 14 E0, F0, 14

Example: What sequence of make codes and break codes should be sent to your computer for the character

"G" to appear in a word processor? Since this is an upper-case letter, the sequence of events that need to take

place are: press the "Shift" key, press the "G" key, release the "G" key, release the "Shift" key. The scan

codes associated with these events are the following: make code for the "Shift" key (12h), make code for the

"G" key (34h), break code for the "G" key(F0h,34h), break code for the "Shift" key (F0h,12h). Therefore, the

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

4 of 12 7/3/2007 1:39 PM

data sent to your computer would be: 12h, 34h, F0h, 34h, F0h, 12h.

If you press a key, its make code is sent to the computer. When you press and hold down a key, that key becomes

typematic, which means the keyboard will keep sending that key's make code until the key is released or another key is

pressed. To verify this, open a text editor and hold down the "A" key. When you first press the key, the character "a"

immediately appears on your screen. After a short delay, another "a" will appear followed by a whole stream of "a"s until

you release the "A" key. There are two important parameters here: the typematic delay, which is the short delay between

the first and second "a", and the typematic rate, which is how many characters per second will appear on your screen after

the typematic delay. The typematic delay can range from 0.25 seconds to 1.00 second and the typematic rate can range

from 2.0 cps (characters per second) to 30.0 cps. You may change the typematic rate and delay using the "Set Typematic

Rate/Delay" (0xF3) command.

Typematic data is not buffered within the keyboard. In the case where more than one key is held down, only the last key

pressed becomes typematic. Typematic repeat then stops when that key is released, even though other keys may be held

down.

Footnote 1) Actually, the "Pause/Break" key does not have a break code in scan code sets one and two. When this key is

pressed, its make code is sent; when it's released, it doesn't send anything. So how do you tell when this key has been

released? You can't.

Reset:

At power-on or software reset (see the "Reset" command) the keyboard performs a diagnostic self-test referred to as BAT

(Basic Assurance Test) and loads the following default values:

Typematic delay 500 ms.

Typematic rate 10.9 cps.

Scan code set 2.

Set all keys typematic/make/break.

When entering BAT, the keyboard enables its three LED indicators, and turns them off when BAT has completed. At this

time, a BAT completion code of either 0xAA (BAT successful) or 0xFC (Error) is sent to the host. This BAT

completion code must be sent 500~750 milliseconds after power-on.

Many of the keyboards I've tested ignore their CLOCK and DATA lines until after the BAT completion code has been

sent. Therefore, an "Inhibit" condition (CLOCK line low) may not prevent the keyboard from sending its BAT

completion code.

Command Set:

A few notes regarding commands the host can issue to the keyboard:

The keyboard clears its output buffer when it recieves any command.

If the keyboard receives an invalid command or argument, it must respond with "resend" (0xFE).

The keyboard must not send any scancodes while processing a command.

If the keyboard is waiting for an argument byte and it instead receives a command, it should discard the previous

command and process this new one.

Below are all the commands the host may send to the keyboard:

0xFF (Reset) - Keyboard responds with "ack" (0xFA), then enters "Reset" mode. (See "Reset" section.)

0xFE (Resend) - Keyboard responds by resending the last-sent byte. The exception to this is if the last-sent byte

was "resend" (0xFE). If this is the case, the keyboard resends the last non-0xFE byte. This command is used by the

host to indicate an error in reception.

The next six commands can be issued when the keyboard is in any mode, but it only effects the behavior of

the keyboard when in "mode 3" (ie, set to scan code set 3.)

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

5 of 12 7/3/2007 1:39 PM

*0xFD (Set Key Type Make) - Disable break codes and typematic repeat for specified keys. Keyboard responds

with "ack" (0xFA), then disables scanning (if enabled) and reads a list of keys from the host. These keys are

specified by their set 3 make codes. Keyboard responds to each make code with "ack". Host terminates this list by

sending an invalid set 3 make code (eg, a valid command.) The keyboard then re-enables scanning (if previously

disabled).

*0xFC (Set Key Type Make/Break) - Similar to previous command, except this one only disables typematic repeat.

*0xFB (Set Key Type Typematic) - Similar to previous two, except this one only disables break codes.

*0xFA (Set All Keys Typematic/Make/Break) - Keyboard responds with "ack" (0xFA). Sets all keys to their

normal setting (generate scan codes on make, break, and typematic repeat)

*0xF9 (Set All Keys Make) - Keyboard responds with "ack" (0xFA). Similar to 0xFD, except applies to all keys.

*0xF8 (Set All Keys Make/Break) - Keyboard responds with "ack" (0xFA). Similar to 0xFC, except applies to all

keys.

*0xF7 (Set All Keys Typematic) - Keyboard responds with "ack" (0xFA). Similar to 0xFB, except applies to all

keys.

0xF6 (Set Default) - Load default typematic rate/delay (10.9cps / 500ms), key types (all keys

typematic/make/break), and scan code set (2).

0xF5 (Disable) - Keyboard stops scanning, loads default values (see "Set Default" command), and waits further

instructions.

0xF4 (Enable) - Re-enables keyboard after disabled using previous command.

0xF3 (Set Typematic Rate/Delay) - Host follows this command with one argument byte that defines the typematic

rate and delay as follows:

.

Repeat Rate

Bits 0-4 Rate(cps) Bits 0-4 Rate(cps) Bits 0-4 Rate(cps) Bits 0-4 Rate(cps)

00h 30.0 08h 15.0 10h 7.5 18h 3.7

01h 26.7 09h 13.3 11h 6.7 19h 3.3

02h 24.0 0Ah 12.0 12h 6.0 1Ah 3.0

03h 21.8 0Bh 10.9 13h 5.5 1Bh 2.7

04h 20.7 0Ch 10.0 14h 5.0 1Ch 2.5

05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3

06h 17.1 0Eh 8.6 16h 4.3 1Eh 2.1

07h 16.0 0Fh 8.0 17h 4.0 1Fh 2.0

Delay

Bits 5-6 Delay (seconds)

00b 0.25

01b 0.50

10b 0.75

11b 1.00

*0xF2 (Read ID) - The keyboard responds by sending a two-byte device ID of 0xAB, 0x83. (0xAB is sent first,

followed by 0x83.)

*0xF0 (Set Scan Code Set) - Keyboard responds with "ack", then reads argument byte from the host. This

argument byte may be 0x01, 0x02, or 0x03 to select scan code set 1, 2, or 3, respectively. The keyboard responds

to this argument byte with "ack". If the argument byte is 0x00, the keyboard responds with "ack" followed by the

current scan code set.

0xEE (Echo) - The keyboard responds with "Echo" (0xEE).

0xED (Set/Reset LEDs) - The host follows this command with one argument byte, that specifies the state of the

keyboard's Num Lock, Caps Lock, and Scroll Lock LEDs. This argument byte is defined as follows:

MSb LSb

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

6 of 12 7/3/2007 1:39 PM

Always

0

Always

0

Always

0

Always

0

Always

0

Caps

Lock

Num

Lock

Scroll

Lock

"Scroll Lock" - Scroll Lock LED off(0)/on(1)

"Num Lock" - Num Lock LED off(0)/on(1)

"Caps Lock" - Caps Lock LED off(0)/on(1)

*Originally available in PS/2 keyboards only.

Emulation:

Click here for keyboard/mouse routines. Source in MPASM for PIC microcontrollers.

The i8042 Keyboard Controller:

Up to this point in the article, all information has been presented from a hardware point-of-view. However, if you're

writing low-level keyboard-related software for the host PC, you won't be communicating directly with the keyboard.

Instead, a keyboard controller provides an interface between the keyboard and the peripheral bus. This controller takes

care of all the signal-level and protocol details, as well as providing some conversion, interpretation, and handling of scan

codes and commands.

An Intel 8042/compatible microcontroller is used as the PC's keyboard controller. In modern computers, this

microcontroller is hidden within the motherboard's chipset, which integrates many controllers in a single package.

Nonetheless, this device is still there, and the keyboard controller is still commonly referred to as "the 8042".

Depending on the motherboard, the keyboard controller may operate in one of two modes: "AT-compatible" mode, or

"PS/2-compatible" mode. The latter is used if a PS/2 mouse is supported by the motherboard. If this is the case, the 8042

acts as the keyboard controller and the mouse controller. The keyboard controller auto-detects which mode it is to use

according to how it's wired to the keyboard port.

The 8042 contains the following registers:

A one-byte input buffer - contains byte read from keyboard; read-only

A one-byte output buffer - contains byte to-be-written to keyboard; write-only

A one-byte status register - 8 status flags; read-only

A one-byte control register - 7 control flags; read/write

The first three registers (input, output, status) are directly accessible via ports 0x60 and 0x64. The last register (control) is

read using the "Read Command Byte" command, and written using the "Write Command Byte" command. The following

table shows how the peripheral ports are used to interface the 8042:

Port
Read /

Write
Function

0x60 Read Read Input Buffer

0x60 Write Write Output Buffer

0x64 Read Read Status Register

0x64 Write Send Command

Writing to port 0x64 doesn't write to any specific register, but sends a command for the 8042 to interpret. If the command

accepts a parameter, this parameter is sent to port 0x60. Likewise, any results returned by the command may be read from

port 0x60.

When describing the 8042, I may occasionally refer to its physical I/O pins. These pins are defined below:

AT-compatible mode

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

7 of 12 7/3/2007 1:39 PM

Port 1 (Input Port):

Pin Name Function

0 P10 Undefined

.

1 P11 Undefined

.

2 P12 Undefined

.

3 P13 Undefined

.

4 P14

External RAM

1: Enable external RAM

0: Disable external RAM

5 P15

Manufacturing Setting

1: Setting enabled

0: Setting disabled

6 P16

Display Type Switch

1: Color display

0: Monochrome

7 P17

Keyboard Inhibit Switch

1: Keyboard enabled

0: Keyboard inhibited

Port 2 (Output Port):

Pin Name Function

0 P20

System Reset

1: Normal

0: Reset computer

1 P21 Gate A20

.

2 P22 Undefined

.

3 P23 Undefined

.

4 P24 Input Buffer Full

.

5 P25 Output Buffer Empty

.

6 P26

Keyboard Clock

1: Pull Clock low

0: High-Z

7 P27

Keyboard Data:

1: Pull Data low

0: High-Z

Port 3 (Test Port):

Pin Name Function

0 T0

Keyboard Clock

(Input)

.

1 T1

Keyboard Data

(Input)

.

2 -- Undefined

.

3 -- Undefined

.

4 -- Undefined

.

5 -- Undefined

.

6 -- Undefined

.

7 -- Undefined

.

PS/2-compatible mode

Port 1 (Input Port):

Pin Name Function

0 P10

Keyboard Data

(Input)

.

1 P11

Mouse Data

(Input)

.

2 P12 Undefined

.

3 P13 Undefined

.

4 P14

External RAM

1: Enable external RAM

0: Disable external RAM

5 P15

Manufacturing Setting

1: Setting enabled

0: Setting disabled

Port 2 (Output Port):

Pin Name Function

0 P20

System Reset

1: Normal

0: Reset computer

1 P21 Gate A20

.

2 P22

Mouse Data:

1: Pull Data low

0: High-Z

3 P23

Mouse Clock:

1: Pull Clock low

0: High-Z

4 P24

Keyboard IBF interrupt:

1: Assert IRQ 1

0: De-assert IRQ 1

5 P25

Mouse IBF interrupt:

1: Assert IRQ 12

0: De-assert IRQ 12

Port 3 (Test Port):

Pin Name Function

0 T0

Keyboard Clock

(Input)

.

1 T1

Mouse Clock

(Input)

.

2 -- Undefined

.

3 -- Undefined

.

4 -- Undefined

.

5 -- Undefined

.

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

8 of 12 7/3/2007 1:39 PM

6 P16

Display Type Switch

1: Color display

0: Monochrome

7 P17

Keyboard Inhibit Switch

1: Keyboard enabled

0: Keyboard disabled

6 P26

Keyboard Clock:

1: Pull Clock low

0: High-Z

7 P27

Keyboard Data:

1: Pull Data low

0: High-Z

6 -- Undefined

.

7 -- Undefined

.

(Note: Reading keyboard controller datasheets can be confusing--it will refer to the "input buffer" as the "output buffer"

and vice versa. This makes sense from the point-of-view of someone writing firmware for the controller, but for

somebody used to interfacing the controller, this can cause problems. Throughout this document, I only refer to the "input

buffer" as the one containing input from the keyboard, and the "output buffer" as the one that contains output to be sent to

the keyboard.)

Status Register:

The 8042's status flags are read from port 0x64. They contain error information, status information, and indicate whether

or not data is present in the input and output buffers. The flags are defined as follows:

MSb LSb

AT-compatible mode: PERR RxTO TxTO INH A2 SYS IBF OBF

PS/2-compatible mode: PERR TO MOBF INH A2 SYS IBF OBF

OBF (Output Buffer Full) - Indicates when it's okay to write to output buffer.

0: Output buffer empty - Okay to write to port 0x60

1: Output buffer full - Don't write to port 0x60

IBF (Input Buffer Full) - Indicates when input is available in the input buffer.

0: Input buffer empty - No unread input at port 0x60

1: Input buffer full - New input can be read from port 0x60

SYS (System flag) - Post reads this to determine if power-on reset, or software reset.

0: Power-up value - System is in power-on reset.

1: BAT code received - System has already beed initialized.

A2 (Address line A2) - Used internally by the keyboard controller

0: A2 = 0 - Port 0x60 was last written to

1: A2 = 1 - Port 0x64 was last written to

INH (Inhibit flag) - Indicates whether or not keyboard communication is inhibited.

0: Keyboard Clock = 0 - Keyboard is inhibited

1: Keyboard Clock = 1 - Keyboard is not inhibited

TxTO (Transmit Timeout) - Indicates keyboard isn't accepting input (kbd may not be plugged in).

0: No Error - Keyboard accepted the last byte written to it.

1: Timeout error - Keyboard didn't generate clock signals within 15 ms of "request-to-send".

RxTO (Receive Timeout) - Indicates keyboard didn't respond to a command (kbd probably broke)

0: No Error - Keyboard responded to last byte.

1: Timeout error - Keyboard didn't generate clock signals within 20 ms of command reception.

PERR (Parity Error) - Indicates communication error with keyboard (possibly noisy/loose connection)

0: No Error - Odd parity received and proper command response recieved.

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

9 of 12 7/3/2007 1:39 PM

1: Parity Error - Even parity received or 0xFE received as command response.

MOBF (Mouse Output Buffer Full) - Similar to OBF, except for PS/2 mouse.

0: Output buffer empty - Okay to write to auxillary device's output buffer

1: Output buffer full - Don't write to port auxillary device's output buffer

TO (General Timout) - Indicates timeout during command write or response. (Same as TxTO + RxTO.)

0: No Error - Keyboard received and responded to last command.

1: Timeout Error - See TxTO and RxTO for more information.

[EG: On my PC, the normal value of the 8042's "Status" register is 14h = 00010100b. This indicates keyboard

communication is not inhibited, and the 8042 has already completed its self-test ("BAT"). The "Status" register is

accessed by reading from port 64h ("IN AL, 64h")]

Reading keyboard input:

When the 8042 recieves a valid scan code from the keyboard, it is converted to its set 1 equivalent. The converted scan

code is then placed in the input buffer, the IBF (Input Buffer Full) flag is set, and IRQ 1 is asserted. Furthermore, when

any byte is received from the keyboard, the 8042 inhibits further reception (by pulling the "Clock" line low), so no other

scan codes will be received until the input buffer is emptied.

If enabled, IRQ 1 will activate the keyboard driver, pointed to by interrupt vector 0x09. The driver reads the scan code

from port 0x60, which causes the 8042 to de-assert IRQ 1 and reset the IBF flag. The scan code is then processed by the

driver, which responds to special key combinations and updates an area of the system RAM reserved for keyboard input.

If you don't want to patch into interrupt 0x09, you may poll the keyboard controller for input. This is accomplished by

disabling the 8042's IBF Interrupt and polling the IBF flag. This flag is set (1) when data is available in the input buffer,

and is cleared (0) when data is read from the input buffer. Reading the input buffer is accomplished by reading from port

0x60, and the IBF flag is at port 0x64, bit 1. The following assembly code illustrates this:

kbRead:

WaitLoop: in al, 64h ; Read Status byte

 and al, 10b ; Test IBF flag (Status<1>)

 jz WaitLoop ; Wait for IBF = 1
 in al, 60h ; Read input buffer

Writing to keyboard:

When you write to the 8042's output buffer (via port 0x60), the controller sets the OBF ("Output Buffer Full") flag and

processes the data. The 8042 will send this data to the keyboard and wait for a response. If the keyboard does not accept

or generate a response within a given amount of time, the appropriate timeout flag will be set (see Status register

definition for more info.) If an incorrect parity bit is read, the 8042 will send the "Resend" (0xFE) command to the

keyboard. If the keyboard continues to send erroneous bytes, the "Parity Error" flag is set in the Status register. If no

errors occur, the response byte is placed in the input buffer, the IBF ("Input Buffer Full") flag is set, and IRQ 1 is

activated, signaling the keyboard driver.

The following assembly code shows how to write to the output buffer. (Remember, after you write to the output buffer,

you should use int 9h or poll port 64h to get the keyboard's response.)

kbWrite:

WaitLoop: in al, 64h ; Read Status byte

 and al, 01b ; Test OBF flag (Status<0>)

 jnz WaitLoop ; Wait for OBF = 0
 out 60h, cl ; Write data to output buffer

Keyboard Controller Commands:

Commands are sent to the keyboard controller by writing to port 0x64. Command parameters are written to port 0x60

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

10 of 12 7/3/2007 1:39 PM

after teh command is sent. Results are returned on port 0x60. Always test the OBF ("Output Buffer Full") flag before

writing commands or parameters to the 8042.

0x20 (Read Command Byte) - Returns command byte. (See "Write Command Byte" below).

0x60 (Write Command Byte) - Stores parameter as command byte. Command byte defined as follows:

MSb LSb

AT-compatible mode: -- XLAT PC _EN OVR SYS -- INT

PS/2-compatible mode: -- XLAT _EN2 _EN -- SYS INT2 INT

INT (Input Buffer Full Interrupt) - When set, IRQ 1 is generated when data is available in the input buffer.

0: IBF Interrupt Disabled - You must poll STATUS<IBF> to read input.

1: IBF Interrupt Enabled - Keyboard driver at software int 0x09 handles input.

SYS (System Flag) - Used to manually set/clear SYS flag in Status register.

0: Power-on value - Tells POST to perform power-on tests/initialization.

1: BAT code received - Tells POST to perform "warm boot" tests/initiailization.

OVR (Inhibit Override) - Overrides keyboard's "inhibit" switch on older motherboards.

0: Inhibit switch enabled - Keyboard inhibited if pin P17 is high.

1: Inhibit switch disabled - Keyboard not inhibited even if P17 = high.

_EN (Disable keyboard) - Disables/enables keyboard interface.

0: Enable - Keyboard interface enabled.

1: Disable - All keyboard communication is disabled.

PC ("PC Mode") - ???Enables keyboard interface somehow???

0: Disable - ???

1: Enable - ???

XLAT (Translate Scan Codes) - Enables/disables translation to set 1 scan codes.

0: Translation disabled - Data appears at input buffer exactly as read from keyboard

1: Translation enabled - Scan codes translated to set 1 before put in input buffer

INT2 (Mouse Input Buffer Full Interrupt) - When set, IRQ 12 is generated when mouse data is available.

0: Auxillary IBF Interrupt Disabled -

1: Auxillary IBF Interrupt Enabled -

_EN2 (Disable Mouse) - Disables/enables mouse interface.

0: Enable - Auxillary PS/2 device interface enabled

1: Disable - Auxillary PS/2 device interface disabled

?0x90-0x9F (Write to output port) - Writes command's lower nibble to lower nibble of output port (see Output Port

definition.)

?0xA1 (Get version number) - Returns firmware version number.

?0xA4 (Get password) - Returns 0xFA if password exists; otherwise, 0xF1.

?0xA5 (Set password) - Set the new password by sending a null-terminated string of scan codes as this command's

parameter.

?0xA6 (Check password) - Compares keyboard input with current password.

0xA7 (Disable mouse interface) - PS/2 mode only. Similar to "Disable keyboard interface" (0xAD) command.

0xA8 (Enable mouse interface) - PS/2 mode only. Similar to "Enable keyboard interface" (0xAE) command.

0xA9 (Mouse interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if clock line stuck high,

0x03 if data line stuck low, and 0x04 if data line stuck high.

0xAA (Controller self-test) - Returns 0x55 if okay.

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

11 of 12 7/3/2007 1:39 PM

0xAB (Keyboard interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if clock line stuck high,

0x03 if data line stuck low, and 0x04 if data line stuck high.

0xAD (Disable keyboard interface) - Sets bit 4 of command byte and disables all communication with keyboard.

0xAE (Enable keyboard interface) - Clears bit 4 of command byte and re-enables communication with keyboard.

0xAF (Get version)

0xC0 (Read input port) - Returns values on input port (see Input Port definition.)

0xC1 (Copy input port LSn) - PS/2 mode only. Copy input port's low nibble to Status register (see Input Port

definition)

0xC2 (Copy input port MSn) - PS/2 mode only. Copy input port's high nibble to Status register (see Input Port

definition.)

0xD0 (Read output port) - Returns values on output port (see Output Port definition.)

0xD1 (Write output port) - Write parameter to output port (see Output Port definition.)

0xD2 (Write keyboard buffer) - Parameter written to input buffer as if received from keyboard.

0xD3 (Write mouse buffer) - Parameter written to input buffer as if received from mouse.

0xD4 (Write mouse Device) - Sends parameter to the auxillary PS/2 device.

0xE0 (Read test port) - Returns values on test port (see Test Port definition.)

0xF0-0xFF (Pulse output port) - Pulses command's lower nibble onto lower nibble of output port (see Output Port

definition.)

Modern Keyboard Controllers:

So far, I've only discussed the 8042 keyboard controller. Although modern keyboard controllers remain compatible with

the original device, compatibility is their only requirement (and their goal.)

My motherboard's keyboard controller is a great example of this. I connected a microcontroller+LCD in parallel to my

keyboard to see what data is sent by the keyboard controller. At power-up, the keyboard controller sent the "Set LED

state" command to turn off all LEDs, then reads the keyboard's ID. When I tried writing data to the output buffer, I found

the keyboard controller only forwards the "Set LED state" command and "Set Typematic Rate/Delay" command. It does

not allow any other commands to be sent to the keyboard. However, it does emulate the keyboard's response by placing

"acknowledge" (0xFA) in the input buffer when appropriate (or 0xEE in response to the "Echo" command.) Furthermore,

if the keyboard sends it an erroneous byte, the keyboard controller takes care of error handling (sends the "Retry"

command; if byte still erroneous; sends error code to keyboard and places error code in input buffer.)

Once again, keep in mind chipset designers are more interested in compatibility than standardization.

Initialization:

The following is the communication between my computer and keyboard when it boots-up. I beleive the first three

commands were initiated by the keyboad controller, the next command (which enables Num lock LED) was sent by the

BIOS, then the rest of the commands were sent my the OS (Win98SE). Remember, these results are specific to my

computer, but it should give you a general idea as to what happens at startup.

Keyboard: AA Self-test passed ;Keyboard controller init

Host: ED Set/Reset Status Indicators

Keyboard: FA Acknowledge

Host: 00 Turn off all LEDs

Keyboard: FA Acknowledge

Host: F2 Read ID

Keyboard: FA Acknowledge

Keyboard: AB First byte of ID

Host: ED Set/Reset Status Indicators ;BIOS init

Keyboard: FA Acknowledge

Host: 02 Turn on Num Lock LED

Keyboard: FA Acknowledge

Host: F3 Set Typematic Rate/Delay ;Windows init

Keyboard: FA Acknowledge

The PS/2 Keyboard Interface http://www.computer-engineering.org/ps2keyboard/

12 of 12 7/3/2007 1:39 PM

Host: 20 500 ms / 30.0 reports/sec

Keyboard: FA Acknowledge

Host: F4 Enable

Keyboard: FA Acknowledge

Host: F3 Set Typematic Rate/delay

Keyboard: FA Acknowledge

Host: 00 250 ms / 30.0 reports/sec
Keyboard: FA Acknowledge

Scan Codes -- Set 1 http://www.computer-engineering.org/ps2keyboard/scancodes1.html

1 of 2 7/3/2007 1:38 PM

Keyboard Scan Codes: Set 1

*All values are in hexadecimal

101-, 102-, and 104-key keyboards:

KEY MAKE BREAK ----- KEY MAKE BREAK ----- KEY MAKE BREAK

A 1E 9E 9 0A 8A [1A 9A

B 30 B0 ` 29 89 INSERT E0,52 E0,D2

C 2E AE - 0C 8C HOME E0,47 E0,97

D 20 A0 = 0D 8D PG UP E0,49 E0,C9

E 12 92 \ 2B AB DELETE E0,53 E0,D3

F 21 A1 BKSP 0E 8E END E0,4F E0,CF

G 22 A2 SPACE 39 B9 PG DN E0,51 E0,D1

H 23 A3 TAB 0F 8F U ARROW E0,48 E0,C8

I 17 97 CAPS 3A BA L ARROW E0,4B E0,CB

J 24 A4 L SHFT 2A AA D ARROW E0,50 E0,D0

K 25 A5 L CTRL 1D 9D R ARROW E0,4D E0,CD

L 26 A6 L GUI E0,5B E0,DB NUM 45 C5

M 32 B2 L ALT 38 B8 KP / E0,35 E0,B5

N 31 B1 R SHFT 36 B6 KP * 37 B7

O 18 98 R CTRL E0,1D E0,9D KP - 4A CA

P 19 99 R GUI E0,5C E0,DC KP + 4E CE

Q 10 90 R ALT E0,38 E0,B8 KP EN E0,1C E0,9C

R 13 93 APPS E0,5D E0,DD KP . 53 D3

S 1F 9F ENTER 1C 9C KP 0 52 D2

T 14 94 ESC 01 81 KP 1 4F CF

U 16 96 F1 3B BB KP 2 50 D0

V 2F AF F2 3C BC KP 3 51 D1

W 11 91 F3 3D BD KP 4 4B CB

X 2D AD F4 3E BE KP 5 4C CC

Y 15 95 F5 3F BF KP 6 4D CD

Z 2C AC F6 40 C0 KP 7 47 C7

0 0B 8B F7 41 C1 KP 8 48 C8

1 02 82 F8 42 C2 KP 9 49 C9

2 03 83 F9 43 C3] 1B 9B

3 04 84 F10 44 C4 ; 27 A7

4 05 85 F11 57 D7 ' 28 A8

5 06 86 F12 58 D8 , 33 B3

6 07 87 PRNT
SCRN

E0,2A,
E0,37

 E0,B7,
E0,AA

 . 34 B4

7 08 88 SCROLL 46 C6 / 35 B5

8 09 89 PAUSE E1,1D,45
E1,9D,C5

-NONE-

ACPI Scan Codes:

Scan Codes -- Set 1 http://www.computer-engineering.org/ps2keyboard/scancodes1.html

2 of 2 7/3/2007 1:38 PM

Key Make Code Break Code

Power E0, 5E E0, DE

Sleep E0, 5F E0, DF

Wake E0, 63 E0, E3

Windows Multimedia Scan Codes:

Key Make Code Break Code

Next Track E0, 19 E0, 99

Previous Track E0, 10 E0, 90

Stop E0, 24 E0, A4

Play/Pause E0, 22 E0, A2

Mute E0, 20 E0, A0

Volume Up E0, 30 E0, B0

Volume Down E0, 2E E0, AE

Media Select E0, 6D E0, ED

E-Mail E0, 6C E0, EC

Calculator E0, 21 E0, A1

My Computer E0, 6B E0, EB

WWW Search E0, 65 E0, E5

WWW Home E0, 32 E0, B2

WWW Back E0, 6A E0, EA

WWW Forward E0, 69 E0, E9

WWW Stop E0, 68 E0, E8

WWW Refresh E0, 67 E0, E7

WWW Favorites E0, 66 E0, E6

Scan Codes -- Set 2 http://www.computer-engineering.org/ps2keyboard/scancodes2.html

1 of 2 7/3/2007 1:36 PM

Keyboard Scan Codes: Set 2

*All values are in hexadecimal

101-, 102-, and 104-key keyboards:

KEY MAKE BREAK ----- KEY MAKE BREAK ----- KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [54 FO,54

B 32 F0,32 ` 0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U ARROW E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 FO,12 D ARROW E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 FO,14 R ARROW E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 05 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 06 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 04 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 03 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 01 F0,01] 5B F0,5B

3 26 F0,26 F10 09 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 ' 52 F0,52

5 2E F0,2E F12 07 F0,07 , 41 F0,41

6 36 F0,36 PRNT
SCRN

E0,12,
E0,7C

E0,F0,

7C,E0,
F0,12

 . 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE

E1,14,77,

E1,F0,14,
F0,77

-NONE-

ACPI Scan Codes:

Key Make Code Break Code

Scan Codes -- Set 2 http://www.computer-engineering.org/ps2keyboard/scancodes2.html

2 of 2 7/3/2007 1:36 PM

Power E0, 37 E0, F0, 37

Sleep E0, 3F E0, F0, 3F

Wake E0, 5E E0, F0, 5E

Windows Multimedia Scan Codes:

Key Make Code Break Code

Next Track E0, 4D E0, F0, 4D

Previous Track E0, 15 E0, F0, 15

Stop E0, 3B E0, F0, 3B

Play/Pause E0, 34 E0, F0, 34

Mute E0, 23 E0, F0, 23

Volume Up E0, 32 E0, F0, 32

Volume Down E0, 21 E0, F0, 21

Media Select E0, 50 E0, F0, 50

E-Mail E0, 48 E0, F0, 48

Calculator E0, 2B E0, F0, 2B

My Computer E0, 40 E0, F0, 40

WWW Search E0, 10 E0, F0, 10

WWW Home E0, 3A E0, F0, 3A

WWW Back E0, 38 E0, F0, 38

WWW Forward E0, 30 E0, F0, 30

WWW Stop E0, 28 E0, F0, 28

WWW Refresh E0, 20 E0, F0, 20

WWW Favorites E0, 18 E0, F0, 18

